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Asymptotic operator algebras in quantum mechanics 

Kay-Kong Wan and R G D McLean 
Department of Theoretical Physics, St Andrews University, St Andrews, Fife, UK 

Received 9 June 1983, in final form 11 October 1983 

Abstract. The asymptotic behaviour of quantum mechanical states at large times has 
recently been discussed by Wan and McLean. This paper deals with the corresponding 
behaviour of quantum mechanical operators. The concept of asymptotic operators is 
introduced and their mathematical properties in the weak, the uniform and the strong 
operator topologies studied. Results are presented in a series of theorems, lemmas and 
corollaries. 

1. Introduction 

It is well known (Amrein 1981) that every state of a free particle is a scattering state, 
i.e. the probability of finding a free particle in any fixed bounded region in the 
configuration space R" vanishes as time t tends to infinity. 

We have made a study of the behaviour of quantum mechanical states at large 
times (Wan and McLean 1983a, b) and in this paper we shall present some mathematical 
properties of the asymptotic behaviour of observables. This is not a purely mathematical 
exercise; in fact we shall, in an ensuing paper, propose a formulation of quantum 
mechanics based on one of the operator algebras introduced here. 

We confine our attention to a free quantum system of mass m having configuration 
space R". A state 4 is then a normalised member of the Hilbert space 2= L2(R") and 
its time evolution is given by 4l = Up4 where Up = exp(Hot/ih) and Ho is the n- 
dimensional free Hamiltonian. 

We shall denote the von Neumann algebra of all bounded operators on %by B( 2). 
For each A in B( X )  we denote U?+AU: by A,. The spectral measures of position 

Throughout this paper we shall on many occasions take limits as time tends to 
and momentum are denoted by E, and Ep respectively. 

infinity so for brevity we write lim for limr+m. 

2. The notion of asymptotic operator algebras 

We shall give a general discussion here, leaving the study of particular asymptotic 
algebras to later sections. 

Definition 1 .  Asymptotic operators and asymptotic operator algebras. 

exists for every 4 in 2. 
(1) An operator A in B ( X )  will be called an asymptotic operator if lim(+/Ar4) 
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(2) A C*-subalgebra of B ( X )  will be called an asymptotic operator algebra on 2 
if every element of the algebra is an asymptotic operator. 

These definitions can easily be extended to a simple scattering system with Hamil- 
tonian H by replacing A, by U:AU, where U,=exp(Hfih) and by requiring 
lim(41U:AUr4) to exist for all scattering states 4. We shall only consider the case of 
a free Hamiltonian in this paper for simplicity. 

The physical meaning of the above definitions is transparent. Literally they mean 
that the expectation value (4rlA4r) which equals (41Ar4) converges in time. In other 
words we can talk about the expectation value of an asymptotic observable as the 
particle goes to 'infinity'. Examples of such operators are all spectral projectors EJA) 
of momentum p and also the spectral projectors E, (A)  of position x for a bounded 
Bore1 set A in R". 

The following theorem shows that not every operator in B ( X )  is an asymptotic 
operator and consequently that an asymptotic algebra of operators is necessarily a 
proper subset of B( X ) .  

Theorem 1. Let + E X, + # 0; then there exists a spectral projector E x ( A )  of position 
for which lim(t,h,lEx(A)+r) does not exist. The sets A and R " - A  are necessarily 
unbounded. 

Prooj 
(i) Without loss of generality we may assume l l+l i  = 1. Let br be a ball of radius r 

centred at the origin in R". Let ro and to be fixed and let E > O ;  then since + is a 
scattering state we have for some T > to 

IIEx(bro)+~I12<$E. 

II(I-E,(b,))~,1I2<tE. 

1 = I/{ 

Also since I - E,( br) converges strongly to 0 as r + a3 there exists N > ro such that 

Now since N > ro 

( bhi - Ex ( brJ) + [ I  - (Ex ( bhi ) - Ex ( b r J  )J>+,II' 
= II(E.~( bN) - ~ x ( b r J )  +TI2 + - bN)) +TI2 + I P x (  brJ +rI121* 

Hence given ro, to and E > 0 there exist N > ro and T > to such that 

I l (Ex (  b N )  - brJ) +T(12 > 1 - E.  

(ii) Given E = ro = to = 1 we can use the result established in (i) to find r l  > ro and 
t l  > To+ 1 such that 

JI(E,(A,,)-Ex(Ar~,))+,,I12> 1-1/1 =0.  

Applying the result again starting with r l ,  tl + 1 and E = 4 we deduce that there exist 
r2 > rl and f2 > t l  + 1 with 

I I ( E x (  br2) - E x (  bq)) +r2II2 > 1 - f. 
Repeating this process we obtain inductively an increasing sequence b,, converging 

to R" and a sequence f k  diverging to fa such that for each integer k 3 1 

I I (Ex(  br,) - Ex( brk-,))+1I2 > 1 - 11' k. 
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Let Ak=b,,-b,,_, and A = A 2 u A 4 u  . . . ;  then R " - A = b , o u A , u A 3 u  . . . .  Now we 
have 

((Ex(A)$,2,1(2311E~(Azk)$,2k112> 1 - 1/2kS$,  

IIEX(R"-A)$f,,+ll/23 IIEx(A2k+l)$r2k-1/12> 1 - 1/(2k+ 11, 
and it follows that 

IIEx(A)$f,,fll12 = 1 -IIEx(R" -A)$Flqk,1112 < 1/(2k + 1) .  

Hence limk-ccllEx(A)$,24+,)(2 = 0 while ~~EX(A)$,,,~~ 24 for all k. 

converge to the same limit. 

exists whenever A or R" - A  is bounded. 

Hence lim,+m($f I Ex(A)$,) does not exist since the above two subsequences do not 

Finally it is easily checked from the definition of a scattering state that the limit 

Definition 2. The sei of asymptotic operators. We call the set 

dh' = { A  E B(  X ) :  lim(4 1 A,4) exists V 4  E X} 
the set of asymptotic operators. We also introduce the set 

do" = { A  E B ( X ) :  lim(q5 1 Afq5) = 0 V 4  E X}. 
The use of the superscript w is explained by the following theorem. 

Theorem 2. 

d" = { A  E B( 2): w-lim A, exists}, 

d r  = { A  E B(  X ) :  w-lim A, = 0}, 

where w-lim denotes weak convergence. 

Proof. 
(i) An operator A E B( 2) such that A, converges weakly is obviously in d". 
(ii) From the identity 

2(4  / A $ )  = ( 4  + $ IA(4 + $))-i(4 +i$  IA(4 +i$))+i(4 IA4) 

-i($ I A $ ) - ( 4  I A 4 )  -($ (AIL) 
which holds for any A in B( 2') and any 4, 4 in X we deduce that lim(4 I A,*) exists 
for every A in d". For a fixed A the formula s( 4, $) = lim( 4 1 A,$)  defines a sesquilinear 
form s on X which is bounded since 

ls(4, CL)/ = liml(4 lAf$)l IIAllll~llll~ll. 
It follows (Weidmann 1980) that there is an operator T E B( X) with s( 4 , $ )  = ( 4  ( T4) 
for all 4, CC, E X and clearly A, converges weakly to T. 

(iii) The result for do" follows directly from the identity above. 

Lemma 1.  The Fourier-Plancherel operator F satisfies 

lim(4 1 F,+) = 0 v4, * E  2. 

Proof. The Fourier-Plancherel operator F is a unitary operator on X = L2(R")  (Roman 
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1975), and it relates the position and momentum operators by p = hF’xF (Prugoveeki 
1971). 

Let Vr=exp(htx2/i2m); then UP=FtVrF. Now let us assume, without loss of 
generality, that 11411= 1 1 $ 1 1 =  1. Then for any E > 0 we can choose a bounded Borel set 
A in Iw” such that l l (I-Ex(A))F$l)<&. Also since 4 is a scattering state we have 
/ I E ~ ( A ) ~ ~ I I  <& for all Sufficiently large t. 

Since V, commutes with Ex(A) it follows that for all sufficiently large t 

l(4 I u?~uP+)l = I( uP4 I VrF+)I 

s I (Ex(A)uP4 I VF$)I+I(uP4 I(I-Ex(A))VrF$)I 

l l ~ ~ ( ~ )  u%ll + IIu - E ~ ( A ) ) ~ I I  
< E  

and the proof is complete. 

Theorem 3. d” is closed under the adjoint operation but is not an operator algebra. 

Proof. 
(i) Obviously A E ~ ~ ~ A ~ E ~ ~ .  
(ii) For any Borel set A in Iw“ let h A = { h x :   EA}; then E x ( A ) = F E p ( h A ) F t  

(Weidman 1980), F being the Fourier-Plancherel operator. So if d” were an algebra 
it would contain each &(A) since these are products of elements of d” contradicting 
theorem 1. 

Perhaps we should mention here that the units of various quantities are assumed 
fixed at the outset so that their values, e.g. h,  are specified by dimensionless numbers. 

Theorem 4. dr is closed under the adjoint operation but is not an operator algebra. 

Proof. 
(i) Obviously A E dr + A t  E dppoW. 
(ii) We shall show that there is a self-adjoint operator A in dr whose square A* 

From the fact that limliEx(A)4rll = 0 for all 4 E 2t and all bounded Borel sets A it 
is not in d,W. 

follows that 

But since 
A = F t E x ( A ) + E x ( A ) F ~  dr. 

l(+rlF+Ex(A)F+Ex(A) 4r)l 11411 I I ~ x ( i i )  4rII, 
I(4r IEx(A)FEx(A)Fd+)I II4IIIIEx(A)hII, 

and commutes with E,(hA) =FtEx(A)F it is easily verified that 

l im(4  IA24,)=lim(4r IFt&(A)F4r)=(4 (FtEx(A)F4) 

which is clearly non-zero for some 4 so A 2 $  

3. Some asymptotic algebras 

We shall introduce two types of asymptotic algebra here, the first being a ‘local’ algebra, 
the second containing ‘non-local’ operators. 
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3.1. Algebras of local operators 

Local observables associated with a quantum system having infinitely many degrees of 
freedom have been the subject of intensive studies (Emch 1972a, Bratteli and Robinson 
1979, 1981) ever since Haag and Kastler (1964) introduced the algebraic approach 
to quantum field theory in terms of local observables. There have also been attempts 
to apply this algebraic approach to tackle quantum mechanical problems (Hepp 1972, 
Emch 1972b, Emch and Whitten-Wolfe 1976). 

The specific problems on the existence of local observables and on the localisation 
of observables in quantum mechanics have recently been studied by Wan and his 
coworkers (Wan and McFarlane 1981, Wan and Jackson 1983, Wan et a1 1983). Here 
we shall list some relevant mathematical properties. 

Definition 3. Algebras of local operators. 
(1) The local algebra in A is defined to be 

d,, ={E,(A)AE,(A): A E B ( x ) }  

and its self-adjoint elements are called local observables in A. 
(2) The local algebra is defined to be 

.peL = U &A 

the union being taken over all bounded Borel sets A. The self-adjoint elements of dL 
are called local observables. 

(3) The quasi-local algebra is the uniform closure JL of dL and its self-adjoint 
elements are called quasi-local observables. 

Some mathematical properties of these algebras are given in the following theorem, 
while physical properties of local operators are given by Wan and Jackson (1983). 

Theorem 5. 
(1) If A is bounded then d,, is a proper C*-subalgebra of B ( X ) .  
(2) dL is a proper *-subalgebra of B ( X )  but is not a C*-subalgebra. 
(3) The strong closure of dL is B( X) and the von Neumann algebra generated by 

(4) Let A E B( X); then these statements are equivalent: 
(a) A E dL. 
(b) There is a sequence A f  of bounded Borel sets in R" such that E x ( A l ) A E x ( A l )  

(c) The sequence E x ( b , ) A E x ( b l )  converges uniformly to A for every increasing 

( 5 )  d, is a proper C*-subalgebra of B ( X )  without a unit. 
(6) dL contains all compact operators and in particular all finite dimensional 

dL is B ( X ) .  

converges uniformly to A. 

sequence bl of balls converging to R". 

projectors. 

Proof. 
(1) This is easily verified as is the assertion that SS, is a proper *-subalgebra. 
(3) Let A E B ( X )  and let A,  be an increasing sequence of bounded Borel sets 

converging to R". Since E x ( A f )  converges strongly to I we have, using the multiplicative 
property of strongly convergent sequences, that E x ( A I ) A E , ( A f )  converges strongly 
to A. 
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This together with the fact that a von Neumann algebra is closed in the strong 

(4) The following inequality will be used frequently: 
Let S I ,  Sz be two Borel sets such that SI c S2 ; then for any A, B E (X) we have 

operator topology establishes (3).  

Firstly we show (a)*(b). 

A. Clearly for each 1 there is a bounded Borel set A ,  with Af = Ex(A/)AJ2x(Af). 
Let A E dL; then there is a sequence A/ of local operators converging uniformly to 

Now take SI  = Sz = A and B = Af in the above inequality giving 

llEx(Ar)A&(Al) -A(( ~ I ~ E ~ ( A , ) A I E ~ ( A ~ ) - A ( I  

= 211Ar -All, 
and (b) follows. 
Next we establish (b)+(c). 

bounded Borel sets and A f  = Af for each 1. 

a strictly increasing subsequence bkl (1 = 1,2 ,3  . . .) such that for each 1, A f  c bk,, 

Assume (b) holds and define Ar =U:=, Ai; then A1 is an increasing sequence of 

Now let b k  be an increasing sequence of balls converging to R". Then we can find 

Now since A f  = A f  c bkl taking A = B in the inequality obtained at the beginning gives 

Hence (c) follows. The proof of (4) is complete on observing that ( c ) J ( a )  is obvious. 
( 5 )  Since SS, is a *-subalgebra its norm closure dL is a C*-subalgebra. Sup- 

pose I € & , ;  then by (4) there is a sequence A! of bounded Borel sets with 
~ ~ ~ x ( A ~ ) Z E x ( A ~ ) - Z ~ ~ + O  as / + W .  But 

l l & ( A i ) ~ E ( A r ) - - ~ l l  = l l&(Ai ) -~ l l  =lt&(R"-A~)ll= 1 

giving a contradiction so I e  dL. 
It follows from (3) that the only operators commuting with each element of dL 

are multiples of I. Hence dL does not have a unit. 
(6) Let A f  be an increasing sequence of bounded Borel sets converging to R". Let 

4 E X be a unit vector and let 4f = &(Ai)+. Then the operator PI = 14f)(4f[ is obviously 
in dL. Since 4r converges to 4 in the norm it follows that Pf converges uniformly to 
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the projector P =  /+)(41, for 

IIPI-P~~ =suPll(4r I +)41-(4 I 
~ ~ ~ P ~ l l ~ ~ I - ~ l ~ ~ 4 ~ l l + l l ~ ~  1+)(4I-d)ll) 

~Il4r-411114111+1141-4II 
+ O  as1-m 

where the supremum is over all unit vectors + E X. Hence P is in JL. 
It follows that dL contains all one-dimensional projectors and hence all finite- 

dimensional projectors. Now it follows from the spectral theorem for compact self- 
adjoint operators (Weidmann 1980) that JL contains all compact self-adjoint 
operators. Since an arbitrary compact operator is of the form A + i B  with A and B 
compact and self-adjoint (6) follows. 

(2) Let +(x) = exp(-x2) (x E R") and let P be the projector associated with +. By 
(6) we have PE  JL and it is easily verified that Pe dL. 

3.2. Algebras containing non-local operators 

Definition 4. Non-local algebras. Let U, s and w denote the uniform, strong and weak 
topologies on B( X). When T is one of these topologies we write T*-lim A, = A and 
say T*-lim A, exists whenever 7-lim A, and 7-lim A: both exist and have the values 
A and At respectively. Note that U* and w* convergence coincide with uniform and 
weak convergence. We define 

~ ' = { A E B ( X ) :  T*-limA, exists}, 

d; = {A E B( 2): r*-lim A, = O}, 

dive = {A E B ( X ) :  T*-lim E,,(Al)AtE,,(A2) = 0 for all disjoint Bore1 sets A l  and A2}. 

The subscript avc stands for asymptotically vanishing correlations. The reason for 
this terminology is the easily verified result that lim(4, 1 A$,) = 0 for every A E d:vc 
whenever 4 and $ are asymptotically separable states (as defined in Wan and McLean 
1983a, b). In other words an operator in d,',, does not correlate states which are 
infinitely apart in space. 

The significance of operators of asymptotically vanishing correlations will emerge 
in an alternative formulation of quantum mechanics to be presented in an ensuing 
paper (Wan and McLean 1984). 

The following notation will be useful in stating our main theorems. Let L"(R") 
be the set of all complex valued functions on R" which are essentially bounded and 
measurable with respect to Lebesgue measure (Kato 1966, Roman 1975, Weidmann 
1980). We denote by L"(x) and L"(p) the sets of operators of the form f(x) and 
f ( p )  respectively where f~ L"(R"). Similarly L"(H,,) will denote the set of all 
operators of the form f ( H o )  with f~ L"([O, CO)). 

Let us now study the families of operators introduced above in each topology. 
Beginning with the weak topology we firstly recover d" and d,W already discussed in 
the previous section. The only new element is the set d,W,, whose properties are given 
by the lemmas and theorem below. 

Lemma 2. The parity operator 9' defined by 9 4 ( x )  = 4(-x) (V4  E X) is not a member 
of ds,w U d,"v,. 
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Proof. It is well known that [ 8, HO] = 0 (Roman 1965). We have therefore (4rl 84r) = 
(4JS$) which obviously does not vanish for some 4, 4, or for some 4, IC, with 
E P ( A , ) 4  = 4,E,,(A2)4 = IC,whereA,andA2aredisjoint. WeconcludethatP& d r u  drVc. 

Theorem 6. 
(1) dFVC 2 do" 2 dL. 
( 2 )  drvc is not an operator algebra. 
(3) d,",, does not contain a! ". 
(4) drv, n d" = a!: + La( p) .  
( 5 )  d,",,n d" is not an operator algebra. 

Proof. 
( 1 )  d," is obviously in d,"vc. Now let A E SL; then there exists a sequence A! in 

a!L converging uniformly to A. We have limr-.ca(4r I A40 = limr+a 1iml+a(4r 1 Adr) = 0. 
(2) The Fourier-Plancherel operator F is in dg, since F is in do" by lemma 

1. If drVc were an operator algebra, F 2  would be in ,pPrvc. But F 2 =  8, the parity 
operator (Weidmann 1980) which is not in SrV, by lemma 2. Hence we establish (2). 

(3)  The parity operator is in d" but not in a,",,. 
(4) Every operator in do"+ La( p )  is obviously in d,",,n d". Now let A E A 

dgcn  d" and let B = w-lim A,. Then w-lim(EP(A)AE,(A')), = E,(A)BE,(A') = 0, 
where A' is R" - A .  Consequently we have 

BEp(A) = (E,(A) + E p ( A c ) ) B E p ( A )  = Ep(A)BE,,(A),  

E,(A)B = E p ( A ) B ( E p ( A )  + E p ( A ' ) )  = E,,(A)BE,,(A). 

Hence [B, E , ( A ) ] = O .  It follows that B belongs to L"(p) (Dixmier 1969) and so (4) 
in the theorem is established. 

( 5 )  To prove statement ( 5 )  we can argue as in (2). 
Let us now proceed to examine the situation in the uniform topology. Let {Ho}' 

denote the set of all bounded operators which commute with H,; then we have the 
following theorem. 

Theorem 7. 
( 1 )  d o " = { O } ,  d" ={H,}', d:vc=L"(p) .  
( 2 )  d" and iQaUyc are von Neumann algebras on 2 and 

a," c a,",, c d U  c B( X). 

Proof. 
( l ) ( i )  A E a," elimll UPtAUP I/ = OellAll= 0. 
(ii) {Ho}'c  a" is easily proved. 
Conversely suppose A E d" and let L = u-lim A,; then Vs E [w 

IIL - Lsll IIL - As+rll+ llAs+t - Lsll ( L ,  = UyLU:) 

=llL-As+rll+llAr -Lll, 
so 

lIL-Lsll c ~im(llL-A,+rIJ+lIAr-~II) = O .  
r+m 
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Hence ( V s  ER) U:L = LU: and it follows from Stone's theorem that L commutes 

Finally if E is any spectral projector of Ho then L commutes with E and E commutes 
with Ho. 

with U': so 

IIAE - EA((  = limll U:' ( A E  - E A )  U? ( 1  = limllA,E - EAtIJ 

= ((LE - EL/( = 0 

and it follows that A commutes with Ho. 
(iii) Making use of the property E p ( A )  U: = U:E,(A) we have 

A E L ' " ( p ) J V  disjoint A , ,  A 2 ) ~ ~ p ( A l ) A t ~ p ( ~ ~ ) ) ) = ) l ~ p ( ~ ~ l ) ~ p ( h ~ ) A / I  = O  

+ A  E ~4':~~. 

(VA)  lim(((1- E p ( A ) ) A , E p ( A ) ~ ~  = 0 A E 

* (VA) IIU- E ~ ( A ) ) A E ~ ( N I I  = 0 
+(VA) A E , ( A )  = E,(A)AEp(A)  = E,(A)A 

+ A  commutes with every E p ( A )  

JA E L"(p)  (Dixmier 1969). 

(2) That each set is a von Neumann algebra follows from (1) and the inclusion 
.do" c is obvious. It is easily checked that the parity operator commutes with Ho 
but not with p so d:,,= 4". 

Finally observe that d" contains L"(Ho) as a proper subset, e.g. the parity operator 
is in d" but not in L"(Ho). Note also that A, = A for every A in d". In other words 
A in d" does not evolve in time. 

We shall now turn our attention to the situation in the strong topology. The results 
obtained are summarised in the following theorem which is of immediate physical 
interest (Wan and McLean 1984). 

Theorem 8. Let d = 04' n dive; then 
(1) sPs is a proper C*-subalgebra of B ( X )  containing the parity operator. 
(2) sP = { A  E B ( 2 ) :  s*-lim A, exists and belongs to L"(p)}  = d g + L " ( p )  and both 

dg and sl are C*-subalgebras of B ( X ) .  
(3) d' is an asymptotic algebra and 

oe,c dfic dc dSC B ( 2 ) .  

Proof. 
(1) Since the parity operator is self-adjoint and commutes with Up it clearly 

The only remaining parts of the assertion which are not obvious are that sBs is 

If A, B E ds with T = s-lim A, and S = s-lim B, then the inequality 

belongs to d'. d' is a proper subset of B ( 2 )  by theorem 1. 

closed under multiplication and is closed in the uniform topology. 

II( ( A B )  i - TS) 4 II I(( 
/JAl/ll(B~ - S)4JJ +( ( (A ,  - T)S4J) 

- ArS) 4 ( 1  + I/(ArS - TS) 4 11 
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implies that s-lim(AB), = TS. Since A and B are arbitrary and Tt = s-lim A:, S'= 
s-lim B: we have s-lim(AB): = s-lim(BjA:) = StTt and it follows that A B  E d'. 

Let Ai be a sequence in d S  converging uniformly to A E B( X )  and for each j let 
T, = s-limr+m(Aj),; then for any E X 

li( T, - Tk)4/l = limll(Aj-Ak)4r/l 
r-m 

s l ~ ~ ~ ~ ~ ~ A j - A k ~ \ *  

Hence T, is strongly Cauchy so T = s-lim,+" exists (Weidmann 1980). 
Now fix 4 E 2 f  and define 

f , ( r )  = ll(Al)r4 - T,4ll> f ( t )  = 1144 - T4ll; 
then 

so f ,  converges uniformly to f and we have 

Thus s-lim A, exists. Since AT converges uniformly to A t  an identical argument gives 
the existence of s-lim A:, so A E d' as required. 

(2) Let A denote the set on the right-hand side of the first equality in (2) of the 
theorem. We show d c A c di + L"( p )  c d. 

Firstly let A E d and let T = s-lim A,, then since A E dive we have for any Bore1 
set A 

E,(A)TE,(A')=s-lim Ep(A)AtEp(A') = O  

where A' =R" - A ,  and similarly Ep(Ac)TEp(A) = O .  Now for any A 

TE,(A) = (E,(A) + E,(A')) TE,(N 

= E,(N TE,(N 

= E,(N T(E,(A) + Ep(Ac))  

= E, (N T, 

and it follows that T E  L " ( p )  (Dixmier 1969). Similarly s-lim A: belongs to L"(p) ,  
so A E A .  

Let A E A and let T = s-lim A,. Then T E L"( p )  so T commutes with each Up 
and we have 

II(A-T)r~//=ll(Ar-T)cbJJ+O v 4  E 2 f .  

Also since s-lim Ai  exists it must equal Tt so similarly 

[[(At- Tt),411+0. 

Hence A - T E di which implies A E dg + L"( p ) .  
L"( p ) ;  then A = T + G for some T E dg and some G E A 

L"( p ) .  It is easily checked that T E dS n dive and since G commutes with each Up 
and E,(A) we have G E d' n div, and it follows that A E d. 

Finally suppose A E 
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To complete the proof of (2) we need to show that and d are C*-subalgebras 
of B ( 2 ) .  The only properties which are not obvious are that each is closed under 
multiplication and closed in the uniform topology. 

Let Ai be a sequence in .Piv, converging uniformly to A. Let A I ,  A2 be disjoint 
Borel sets and let 4 E 2; then the following swopping of limits is easily justified by uniform 
convergence 

Thus A E dive, so dive is closed and hence s4 = d s  n dive is closed (using (1)). 
Similarly if A, is a sequence in s4i converging uniformly to A then for every 4 E 2 

so dS, is closed. 
It follows from the first inequality in the proof of (1) that d; and Ju are closed 

under multiplication. This completes the proof that d; and d = Ju are C*-subalgebras. 
(3)  d s  is an asymptotic algebra by (2) and the fact that strong convergence implies 

weak convergence. 
Let A E dL; then A = Ex(A)AEx(A) for some bounded Borel set '4 and since every 

4 E 2 is a scattering state of the free particle Hamiltonian we have 

Hence dL c di and so dL = di since dS, is closed by (2). 
Again using (2) each step in the following is obvious 

4. Concluding remarks 

Quantum mechanics is troubled by the problem of non-locality (Selleri and Tarozzi 
1981) inherent in the theory. We explore the possibility of an alternative formulation 
of quantum mechanics which would incorporate non-locality when small distances are 
involved but would be separable at large distances. A main purpose of studying 
asymptotic operator algebras is to establish a proper C*-subalgebra of B ( X )  which 
can be associated with a quantum mechanical system and on which an alternative 
algebraic formulation of quantum mechanics with the desired non-locality and separa- 
bility characteristics may be established. In the light of results obtained so far we are 
led naturally to the algebra di +Lm( p ) .  A detailed formulation of quantum mechanics 
based on this algebra is presented in an ensuing paper (Wan and McLean 1984). 
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